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The topological complexity of a crystal structure can be quantitatively evaluated

using complexity measures of its quotient graph, which is defined as a projection

of a periodic network of atoms and bonds onto a finite graph. The Shannon

information-based measures of complexity such as topological information

content, IG, and information content of the vertex-degree distribution of a

quotient graph, Ivd, are shown to be efficient for comparison of the topological

complexity of polymorphs and chemically related structures. The IG measure is

sensitive to the symmetry of the structure, whereas the Ivd measure better

describes the complexity of the bonding network.

1. Introduction

Which crystal structure is complex? Despite the obvious and

widely accepted use of the adjective ‘complex’ in the char-

acterization of crystal structures, there is still no strict defini-

tion of crystal-structure complexity that can be applied on an

everyday basis in scientific research. Various approaches to

structure complexity have been outlined (Baur et al., 1983;

Burdett et al., 1994; Mackay, 2001; Estevez-Rams & González-

Férez, 2009; Steurer, 2011) but none of them provided simple

and unambiguous quantitative measures. At the same time,

advances in complex network and chemical graph theories

(Barabási, 2002; Dorogovtsev & Mendes, 2003) allowed the

formulation of a whole series of complexity measures for

chemical, biological, technological and social networks

(Dehmer, 2011). The most interesting parameters are based

upon application of the Shannon information concept. Since

Shannon information is closely related to the Boltzmann

statistical entropy (Haken, 2000), the correct estimation of

structure complexity may provide important insights into the

entropy-based part of the crystal free energy and thus can be

used for investigation of the evolution of information during

processes involving the formation and transformation of

crystalline phases. On the other hand, it is useful to have a set

of quantitative parameters describing the structural

complexity of crystalline solids. It would provide important

tools for the comparison and classification of related struc-

tures according to their complexity. One may also identify

chemical and physical parameters that may have an important

influence upon structural complexity in the course of various

physical and chemical processes, both of natural and artificial

origin.

In this paper, we propose to use information-based topo-

logical complexity measures developed for graphs and

networks for characterization of the topological complexity of

crystal structures. In order to be of use for crystallographers

and crystal chemists, we tried to avoid complex complexity

measures and to focus upon those that are simple, easy to

calculate and agreeable with intuitive feelings of structural

complexity.

2. Crystal structure as a complex network

From the abstract point of view, crystal structure may be

viewed as an infinite network (graph) consisting of atoms as

vertices (nodes) and chemical bonds as edges (links). The

assumption is usually in order that one bond links precisely

two atoms. The graph describing the bond topology of a crystal

has some important properties: (i) it is simple, i.e. it contains

no loops or multiple edges; (ii) it is 3-periodic, i.e. there are

three linearly independent translation vectors that map the

graph onto itself (Klee, 2004; Eon, 2005; Blatov & Proserpio,

2011). 3-Periodic simple nets have been used extensively for

the description of complex crystal structures such as those

observed in zeolites (Smith, 1988, 2000; Baerlocher et al., 2001)

and coordination polymers (Yaghi et al., 2003; Blatov et al.,

2004; Ockwig et al., 2005). A number of comprehensive

databases of 3-periodic simple nets have been compiled such

as the Reticular Chemistry Structure Resource (RCSR;

O’Keeffe et al., 2008) and the Database of Hypothetical

Zeolite Structures (Foster & Treacy, 2010). A 3-periodic

simple net can be described using finite graphs containing

translationally non-equivalent vertices and edges of the net

only. From a mathematical point of view, transition from a net

to a finite graph corresponds to the operation of projection,

when all translationally equivalent vertices of the net project

onto one vertex of the finite graph. This graph is called the

quotient graph of a 3-periodic net (Chung et al., 1984; Klee,

2004). Quotient graphs are not necessarily simple and may

contain loops and multiple edges. Figs. 1(a) and 1(b) show two

periodic nets with quotient graphs depicted in Figs. 1(c) and

1(d), respectively. As can be seen, the 2–4 edge of the quotient
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graph in Fig. 1(d) is a double edge, which indicates that the

vertices 2 and 4 are twice connected to each other in the

respective parent net.

In general, quotient graphs are directed labelled graphs, i.e.

their edges have directions and labels. A direction of an edge

linking vertices A and B indicates that the respective chemical

bond is directed from the respective atom A to the atom B,

whereas a label identifies a vector in three-dimensional space,

usually expressed in terms of crystallographic indices [pqr]. A

quotient graph with directions and labels unambiguously

determines the topology of a structure network consisting of

atoms and chemical bonds. In some cases, simplifications may

be made in order to describe the structure topology in a more

straightforward and transparent way (e.g., for tetrahedral

frameworks, coordination polymers etc.).

Since a quotient graph completely determines crystal

structure topology, its complexity measures can be used as

complexity measures of the whole structure. As the first step,

we suggest considering the topological properties of quotient

graphs without directions and labels.

3. Complexity measures

Many measures of the complexity of graphs have been

proposed recently in the chemical, physical and mathematical

literature (Bonchev, 2003, 2005; Kim & Wilhelm, 2008;

Dehmer, 2011). The simplest measure is the number of

vertices v of a graph G(v; e) (e is the number of edges). The

larger the graph is, the more complex it is. A useful complexity

measure based on the topological properties of graphs is the

average edge complexity, Ea, defined as (Bonchev, 2005)

Ea ¼ 2e=v ¼ haii ð1Þ

where haii is the average vertex degree (vertex degree is the

number of edges incident upon a vertex).

Another class of complexity measures is based upon the

information content (entropy) of graphs. Rashevsky (1955),

Trucco (1956) and Mowshowitz (1968a,b,c,d) were the first to

apply Shannon’s information measure to derive an entropy of

a graph characterizing its topology [see Dehmer & Mowsho-

witz (2011) for the history of graph entropy measures]. In the

framework of Shannon’s information theory (Shannon &

Weaver, 1949), the entropy of information H encoded in a

message of N symbols, which are subdivided into k classes

consisting of N1, N2, . . . . , Nk symbols (the symbols inside each

group are thought to be equivalent), is calculated according to

the following formula:

H ¼ �
Pk
i¼1

pi log2 pi ðbits symbol�1Þ; ð2Þ

where the ratio pi = Ni /N is the probability of occurrence of

the symbols of the ith class.

Application of Shannon’s theory to graphs requires the

formulation of an equivalence criterion that allows one to

subdivide the vertices of a graph into classes. One of the

possible criteria is to classify vertices according to their

symmetry relationships (graph automorphisms). Two vertices

of a graph G are equivalent if their permutation does not

result in a graph topologically different from (= non-

isomorphic to) G. For instance, simultaneous permutations

1$ 3 and 2$ 4 of vertices of the graph shown in Fig. 1(d) do

not change its topology. Its vertices can be classified into two

equivalence classes: C1 = {1, 3} and C2 = {2, 4}. The prob-

abilities for a randomly chosen vertex i in the graph to belong

to the classes C1 and C2 are p1 ¼ v1=v ¼ 2=4 ¼ 0:5 and

p2 ¼ v2=v ¼ 2=4 ¼ 0:5, respectively, where v1 and v2 are the

numbers of vertices in C1 and C2, respectively, and v is the

total number of vertices (v = v1 + v2).

According to Rashevsky (1955), Trucco (1956) and

Mowshowitz (1968a,b,c,d), the topological information

content IG of a graph G is defined as

IG ¼ �
Pk
i¼1

pi log2 pi ðbits vertex�1Þ; ð3Þ

where pi is the probability of occurrence of the vertex of the

ith class.

The topological information content of the graph shown in

Fig. 1(d) is

IG ¼ �ð0:5 log2 1=2þ 0:5 log2 1=2Þ ¼ 1:000 ðbits vertex�1
Þ:

ð4Þ

Let us consider another graph with four vertices shown in Fig.

1(c). All its vertices are equivalent and it is obvious that its

structural information content is zero.

The maximal topological information content IG;max for a

graph G with v vertices is achieved when all vertices are non-

equivalent according to the automorphism group of G. It can

be calculated according to the following formula:

IG;max ¼ log2 v ðbits vertex�1Þ: ð5Þ

In order for IG to be independent from v, we may define the

normalized topological information content, IG,n, as
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Figure 1
Two planar 2-periodic nets (a), (b) and their quotient graphs (c), (d),
respectively.



IG;n ¼ IG=IG;max ¼ �
Pk
i¼1

pi log2 pi

� ��
log2 v: ð6Þ

It should be noted that proper calculation of the topological

information content requires proper determination of the

automorphism group of the quotient graph. In order to

simplify the calculation procedure, vertices of the quotient

graph can be classified into equivalence groups according to

the Wyckoff sites which corresponding atoms occupy in the

crystal structure. As an example let us consider the structure

of K2Cr2O7-IIb (Krivovichev et al., 2000) (Fig. 2a) which has

the space group C2/c. Its reduced unit cell, which defines the

content of the quotient graph, contains four symmetrically

equivalent K, four Cr, four O1, four O2, two O3 and four O4

sites. As a consequence, the quotient graph (Fig. 2c) contains

22 vertices that can be grouped into six equivalence classes

consisting of 4 (K), 4 (Cr), 4 (O1), 4 (O2), 2 (O3) and 4 (O4)

vertices. The corresponding finite probability scheme can be

written as follows: 4/22, 4/22, 4/22, 4/22, 2/22 and 4/22,

respectively. The topological information content is calculated

as

IG ¼ �½5� ð4=22Þ log2 4=22þ ð2=22Þ log2 2=22� ¼ 2:550: ð7Þ

According to this approach, it is obvious that the IG infor-

mation measure is very sensitive to the crystallographic

symmetry of the structure.

Another criterion of equivalence and the corresponding

measure of the complexity of a graph were proposed by

Bonchev (2005). They are based upon the subdivision of

vertices into classes according to their degrees. The corre-

sponding measure of complexity is the information content of

the vertex-degree distribution of a graph, Ivd:

Ivd ¼
Pv

i¼1

ai log2 ai; ð8Þ

where ai is a degree of the ith vertex and summation proceeds

along all v vertices. According to this definition, the graphs

shown in Figs. 1(c) and 1(d) have their Ivd measures equal to

19.020 and 25.510, respectively. Thus, in terms of both struc-

tural and vertex-degree-distribution information content, the

graph in Fig. 1(b) appears to be more complex than that in Fig.

1(a) (the more information the graph contains, the more

complex it is). The Ivd value is a convenient complexity

measure for the comparison of two graphs with the same

number of vertices. Its normalized version in our case is hard

to define, since the quotient graph may contain loops and

multiple edges, which make the maximal value of Ivd indefi-

nite.

Unfortunately, there is no universal measure of graph

complexity that works well for any type of chemical structure.

In the case of a crystal-structure network and its quotient

graph, the most important complexity parameters may be

listed as follows: (i) number of vertices, v, of the quotient

graph = number of atoms in a reduced unit cell (or its part in

the case of distorted structures; see below); (ii) the topological

information content, IG, or its normalized version, IG,n, which

reflects the space-group symmetry of the structure; (iii)

parameters characterizing the number of edges and their

distribution over the graph in terms of vertex degrees (Ivd, Eg,

Ea, En). Complexity measures of groups (i) and (ii) specify the

number, chemical nature and crystallographic (in some cases,

topological) equivalence of atoms, whereas those of group (iii)

characterize the complexity of bond networks. A particular

choice of these or other measures (e.g., partition-independent

information measures: see Dehmer & Emmert-Streib, 2008;

Dehmer, 2008; Dehmer et al., 2009; Dehmer & Mowshowitz,

2011) depends upon the particular class of crystal structures

under consideration.

4. Applications

The most obvious application of topological complexity

measures is to compare the complexity of polymorphs of the

same compound. Fig. 2 shows the structures of K2Cr2O7-IIb

(Krivovichev et al., 2000) (Fig. 2a) and K2Cr2O7-II (Kuz’Min et

al., 1967; Brandon & Brown, 1968; Brunton, 1973; Weakley et

al., 2004) (Fig. 2b), and their quotient graphs [Figs. 2c, 2d,

respectively; only K—O bonds shorter than 3.25 Å have been

taken into account in order for the bond valences to be higher

than 0.05 valence units (Brown, 1981)]. Values of the

complexity parameters for these structures are provided in

Table 1. It can be seen that, according to all the information-

based measures (IG, IG,n, Ivd), the structure of K2Cr2O7-IIb (a

metastable modification) is much simpler than that of

K2Cr2O7-II. This seems to be in agreement with the

‘simplexity principle’ proposed by Goldsmith (1953) which

states that, in the case of rapid crystallization, the metastable

phase that forms first is structurally simple compared to the

stable phase. Indeed, the metastable polymorph K2Cr2O7-IIb

forms as a result of spontaneous crystallization from a

supersaturated aqueous solution of potassium bichromate. As

proposed by Goldsmith (1953), preferential crystallization of

the metastable phase with higher simplexity (= lower

complexity) is due to the smaller size of its critical nuclei in
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Figure 2
Crystal structures of K2Cr2O7-IIb (a) and K2Cr2O7-II (b) and their
quotient graphs (c), (d), respectively. Legend: K atoms = dark grey; Cr
atoms = dark yellow; O atoms = red. Quotient graphs are drawn using
Pajek software (Batagelj & Mrvar, 2003).



comparison with the stable phase. It is obvious that the

proposed complexity parameters, at least partially, account for

this peculiarity: the complex phase has a larger reduced unit

cell and, as a result, a larger quotient graph, compared with

the simple phase. In general, the evaluation of the topological

complexity of phases in the course of a crystallization

sequence governed by the Ostwald’s step rule (Ostwald, 1897)

is an interesting problem [one, however, must be aware that

the structure of at least the first phase in the sequence might

be seriously affected by the structure of complexes present in

the crystallization liquid (Threlfall, 2003)].

Another interesting problem is investigating changes in the

topological complexity of crystal structures along phase

transition pathways. Fig. 3 depicts quotient graph diagrams for

different CaCO3 polymorphs: vaterite (Kamhi, 1963; Meyer,

1969; Medeiros et al., 2007; Demichelis et al., 2012), calcite I

(Chessin et al., 1965), calcite II (Merrill

& Bassett, 1975), calcite III (Smyth &

Ahrens, 1997), aragonite (Dal Negro &

Ungaretti, 1971) and post-aragonite

(Ono et al., 2005). Table 1 provides

values of the complexity measures. The

structure of vaterite has the same

quotient graph as that of calcite I.

However, it is disordered from the

viewpoint of orientation of carbonate

triangular ions in adjacent unit cells and

therefore has additional degrees of

freedom (Demichelis et al., 2012). As a

disordered phase, vaterite has lower

structural complexity than calcite I,

which may explain its metastable appearance during crystal-

lization of CaCO3 from aqueous solutions (Gebauer et al.,

2008). The high-pressure treatment of CaCO3 results in the

following sequence of phases: calcite I! calcite II! calcite

III! aragonite! post-aragonite. The structure of calcite II

(Merrill & Bassett, 1975) is a distorted version of the structure

of calcite I. Despite the fact that its reduced unit cell contains

twice as many atoms as that of calcite I, their topologies are

identical and the quotient graph for calcite II might be

reduced to that shown in Fig. 3(a). Inspection of the data given

in Table 1 shows that the increase of pressure along the line

calcite I! calcite II! calcite III! aragonite corresponds to

the increase of the Ivd complexity measure. However, the

aragonite ! post-aragonite transition is accompanied by a

decrease in the Ivd parameter, whereas the Ea value reaches its

maximum (6.0). The latter observation accounts for the

increase of the coordination number of Ca2+ ions, which

implies complexification of the bonding network with

increasing pressure. Similar tendencies of high-pressure phase

transitions (initial increase and subsequent decrease of

complexity) have also been observed for SiO2 and TiO2

polymorphs, which will be reported elsewhere.

In general, it seems that the Ivd complexity measure

provides the most adequate description of topological

complexity of a crystal structure. However, it is not as sensitive

to crystal symmetry as IG and does not reflect an increasing

number of bonds in the network as well as Ea. In addition, it

depends upon the specific choice of interatomic interactions

considered as bonds, which is not always obvious, especially in

the case of large low-valent cations (e.g., alkali metals). In

many cases, it is the IG information measure that provides the

most adequate measure of structural complexity. This is the

case for zeolite frameworks. For uninterrupted zeolite

frameworks TO2 (T = Si, Al, P, Zn etc.), the coordination

numbers of the T and O atoms are 4 and 2, respectively.

Therefore, quotient graphs of zeolite frameworks consist of v

= 3t vertices and e = 4t edges where t is the number of T atoms

in the reduced unit cell of the structure. The Ivd information

measure is equal to

Ivd ¼ 4t log2 4þ 4t log2 2 ¼ 8t þ 4t ¼ 12t ¼ 4v: ð9Þ
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Figure 3
Quotient graphs of the crystal structures of CaCO3 polymorphs: vaterite,
calcite I and calcite II (a), calcite III (b), aragonite (c) and post-aragonite
(d). Legend: white circles = Ca; black circles = C; grey circles = O.
Quotient graphs are drawn using Pajek software (Batagelj & Mrvar,
2003).

Table 1
Values of topological complexity measures for selected crystal structures.

Compound/name v e IG IG,n Ivd Ea References

K2Cr2O7 polymorphs
K2Cr2O7-II 44 96 4.459 0.817 429.421 4.4 Weakley et al. (2004)
K2Cr2O7-IIb 22 48 2.550 0.572 215.020 4.4 Krivovichev et al. (2000)

CaCO3 polymorphs
Vaterite 10 18 1.371 0.413 69.059 3.6 Demichelis et al. (2012)
Calcite I 10 18 1.371 0.413 69.059 3.6 Chessin et al. (1965)
Calcite II 10 18 1.371 0.413 69.059 3.6 Merrill & Bassett (1975)
Calcite III 15 27 3.107 0.795 103.588 3.6 Smyth & Ahrens (1997)
Aragonite 20 48 1.922 0.445 229.137 4.4 Dal Negro & Ungaretti (1971)
Post-aragonite 10 30 1.922 0.579 165.207 6.0 Ono et al. (2005)



Thus, for zeolite frameworks, the Ivd information measure is a

simple function of v and does not discriminate between

frameworks with the same v. In such a situation, the use of

topological information content measures appears to be more

reliable for complexity characterization. For instance, the

zeolite frameworks SOD and NPO (Baerlocher et al., 2001)

have the same number of vertices of quotient graphs (v = 18),

the same Ea value (2.667) and the same Ivd value (72.000).

Standard representation of the SOD framework is in the

Im�33m space group with the T and O atoms in the 12d and 24h

sites, respectively. The reduced cell contains 6 T and 12 O sites

(t = 6; v = 18). The quotient graph consists of two equivalence

classes consisting of 6 and 12 vertices, respectively.

Therefore,

IG ¼ 6=18ðlog2 18� log2 6Þ þ 12=18ðlog2 18� log2 12Þ ¼ 0:918;

IG;n ¼ 0:918= log 218 ¼ 0:220: ð10Þ

Standard representation of the NPO framework is in the space

group P�662c. The T atoms are in the 6h site, whereas O atoms

occupy the 6g and 6h sites. Vertices of the quotient graph are

classified into three equivalence classes consisting of 6 vertices

each.

Therefore,

IG ¼ 3½6=18ðlog2 18� log2 6Þ� ¼ 1:585;

IG;n ¼ 1:585= log 218 ¼ 0:380: ð11Þ

Comparison of the IG and IG,n measures provides the

conclusion that the NPO framework is more complex than the

SOD framework, which is in agreement with general intuition.

5. Conclusions

In this work, information-based measures of quotient graphs

(topological information content IG, normalized topological

information content IG,n and the information content of the

vertex-degree distribution, Ivd) are proposed as parameters

characterizing the complexity of a crystal structure. The

quotient graphs represent structure content within a reduced

crystallographic cell of the structure. Thus, the topological

information content can easily be calculated using Wyckoff

sets of crystallographic sites, whereas the information content

of the vertex-degree distribution can be calculated on the basis

of coordination numbers assigned to specific atoms in the

structure. Both types of information parameters (i.e. those

based on symmetry and those based upon vertex-degree

distribution) should be used in combination depending upon

the problem under consideration.

The proposed parameters can be used for estimating the

complexity of polymorphs of the same compound, for

comparison of the complexities of different related structures,

for investigation of accumulation and dissipation of informa-

tion in various processes involving crystalline phases etc.

Another point of potential interest is the use of crystal-

structure topological complexity measures in the study of

quantitative structure–property relationships in crystalline

materials. However, it is unclear whether the concept of

complexity can be of any value in this field of materials

research.
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